A Novel Hole Filling Method based on the Hybrid PSO-BP Algorithm

نویسندگان

  • Hong Meng
  • Chunxiang Wang
  • Yong Zhang
چکیده

This paper presents a novel hole-filling algorithm in reverse engineering (RE) domain that can fill holes directly from the point clouds-a hybrid PSO-BP approach: Firstly, boundary of the hole is detected and feature points on the boundary are extracted. Secondly, a hole filling method based on the commercial reverse engineering software (Gemagic and Imageware) is employed to cover the hole with a rough mesh. Finally, a hybrid PSO-BP algorithm is exploited to refine the original mesh. The performance of the approach proposed has been evaluated by applying it to two different scattered point clouds from real-world scanned objects-a bucket of an excavator and a gear. The experimental results show that the suggested approach performs quite well, it is able to deal with highly accurate and extremely complicated data points. Besides, it can handle shapes with delicate details as well, the favorable fidelity and efficiency make it a promising candidate for many practical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DESIGN AND APPLICATION OF A HYBRID META-HEURISTIC OPTIMIZATION ALGORITHM BASED ON THE COMBINATION OF PSO, GSA, GWO AND CELLULAR AUTOMATION

Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving s...

متن کامل

Comparison of the Accuracy of Black Hole Algorithms and Gravitational Research and the Hybrid Method in Portfolio Optimization

The main purpose of this research is portfolio optimization in Tehran securities exchange using the black hole algorithm and the Gravitational Research algorithm. We also propose an algorithm named Hybrid Algorithm which combines the two algorithms above to cover the weaknesses of these two algorithms. Finally we compare the results with the Markowitz model and choose the optimal algorithm.<br ...

متن کامل

AN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES

In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...

متن کامل

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

An Improved Hybrid Algorithm Based on PSO and BP for Stock Price Forecasting

Stock price prediction is the main concern for financial firms and private investors. In this paper, we proposed a hybrid BP neural network combining adaptive PSO algorithm (HBP-PSO) to predict the stock price. HBP-PSO takes full use of the global searching capability of PSO and the local searching advantages of BP Neural Network. The PSO algorithm is applied for training the connection weights...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016